3 resultados para oral rehydration therapy

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor suppressor gene FHIT spans a common fragile site and is highly susceptible to environmental carcinogens. FHIT inactivation and loss of expression is found in a large fraction of premaligant and malignant lesions. In this study, we were able to inhibit tumor development by oral gene transfer, using adenoviral or adenoassociated viral vectors expressing the human FHIT gene, in heterozygous Fhit+/− knockout mice, that are prone to tumor development after carcinogen exposure. We therefore suggest that FHIT gene therapy could be a novel clinical approach not only in treatment of early stages of cancer, but also in prevention of human cancer.